2sin^2(x)+3cosx-3=0

Simple and best practice solution for 2sin^2(x)+3cosx-3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2sin^2(x)+3cosx-3=0 equation:


Simplifying
2sin2(x) + 3cosx + -3 = 0

Multiply in2s * x
2in2sx + 3cosx + -3 = 0

Reorder the terms:
-3 + 3cosx + 2in2sx = 0

Solving
-3 + 3cosx + 2in2sx = 0

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '3' to each side of the equation.
-3 + 3cosx + 3 + 2in2sx = 0 + 3

Reorder the terms:
-3 + 3 + 3cosx + 2in2sx = 0 + 3

Combine like terms: -3 + 3 = 0
0 + 3cosx + 2in2sx = 0 + 3
3cosx + 2in2sx = 0 + 3

Combine like terms: 0 + 3 = 3
3cosx + 2in2sx = 3

Add '-2in2sx' to each side of the equation.
3cosx + 2in2sx + -2in2sx = 3 + -2in2sx

Combine like terms: 2in2sx + -2in2sx = 0
3cosx + 0 = 3 + -2in2sx
3cosx = 3 + -2in2sx

Divide each side by '3osx'.
c = o-1s-1x-1 + -0.6666666667in2o-1

Simplifying
c = o-1s-1x-1 + -0.6666666667in2o-1

Reorder the terms:
c = -0.6666666667in2o-1 + o-1s-1x-1

See similar equations:

| 2x^2-10y+8=0 | | y+24=703 | | w/6=30 | | w-88=574 | | 2k^2+7k+5=0 | | v+210=885 | | 25+2.45=47.05 | | 18=p/11 | | p/29=25 | | (3-x)*(2+3)=0 | | 21m=231 | | 25s+2.45s=47.05 | | g+634=853 | | 87(11)+66= | | 3X+4Y=456 | | (x^2)+(x^2)=25 | | w/14=17 | | k/17=27 | | f(x)=2-3/7x | | ?/36=1/? | | 3r(7r+t)= | | 2y^2+3x^2=18 | | 5/2y-40=-10 | | ?36=1/? | | (4x+5)(k+1)=0 | | 2.5+2.45s=47.05 | | 87(11)+2(33)= | | 7x-3+6=2x-2 | | -6+4(-x-5)=-140 | | 28x-18x=-76-4 | | 24(3x-1)-20(5x+1)=15(x+1)-3*120 | | e^9(x)=2 |

Equations solver categories